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Synopsis 

A theoretical model describing how the tear strength of semicrystalline polymers depends upon 
the interaction of the crystalline and amorphous phases is presented. It is based upon the “free- 
volume” theory and a “Hooke’s law-lattice energy” treatment. The tear strength TM is hypothesized 
to be partitioned between the crystalline Qc and amorphous Qa phases. Therefore TM 0: Qc-Qa, 
TM = TwQc-Qa, where Q, = NKTE/bY2 and Qa = e-”/”f = G / G ~ T .  Proof of this theory is obtained 
by measuring the oxygen transmission rates of 11 polyethylene film samples varying in tear strength. 
Good agreement exists between TM (experimental) and TM (theoretical) for 9 of the polyethylene 
samples. The other 2 samples differ from the theory by a factor of 2. One explanation of this de- 
parture is that T varies from unity. 

INTRODUCTION 

One of the least discussed mechanical properties of semicrystalline polymers 
in the literature is tear strength. One reason for this is that it is without theo- 
retical foundation. During the past 50 years theories have evolved from the 
Griffithl “crack theory” to describe the impact, tensile, and tear strengths of 
glassy material. Rivlin and Thomas2 developed the theory of tear strength of 
amorphous rubbers. So far, no theory has been advanced to describe the tear 
strength of semicrystalline polymers. 

Presented in this paper is a theoretical model describing how the tear strength 
of semicrystalline polymers depends upon the interaction of the crystalline and 
amorphous phases. It is based upon the “free-volume” theory and a “Hooke’s 
law-lattice energy” treatment. 

Since it is know that soft, ductile materials have high tear strength, one must 
concentrate on the translational movement of the molecules. This brings into 
focus the molecular theories of diffusion and liquid viscosity. However, the 
problem is complicated by the semicrystalline nature of the polymer; therefore, 
we also must consider a mechanism describing how chains are pulled from the 
crystal lattice without the polymer fracturing. An illustration of this deformation 
is given in Figure 1. Figure l(a) shows that folded chain lamallae in the crys- 
talline phase are connected by randomly coiled amorphous chains. In order for 
the crystalline chains to be pulled out of their 1attice;two conditions must be met. 
First, there must be enough amorphous chains connected to the crystalline 
chains. 

Second, the amorphous chains must be mobile enough so that the covalent 
C-C bonds rearrange and support the force rather than weak London dispersion 
forces. Figure l (b)  shows this alignment. If the amorphous chains cannot 
rearrange in time to accommodate the applied stress, then fewer C-C bonds 
will support the stress. This condition is shown in Figure l(c). 
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Fig. 1. Deformation model of semicrystalline polymer chains in a shear field. 

The tear strength TM is assumed to be partitioned between the crystalline 4, 

TM = ToQc Qa (1) 

and amorphous Qa phases: 

A “Hooke’s law-lattice energy” treatment originated by Orowan3 has been ap- 
plied to the crystalline phase and the “free-volume’’ theory to the amorphous 
phase. 

HOOKE’S LAW-LATTICE ENERGY THEORY 

Consider the stress-separation curve between chains in a crystal lattice (Fig. 
2), where B = stress, Y = yield stress of the bulk polymer, bo = equilibrium dis- 
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Fig. 2. Stress-separation curve between chains in a crystal lattice. 

tance between chains, A = area under the curve, X = frequency of a sine wave, 
E = Young’s modulus, b = distance between chains at  the yield stress. The sine 
wave equation 

G = uf sin(2xuIX) ( 2 )  

approximates the above curve and the area A equals the surface free energy 2 7 ;  
therefore 

2TU 
X 

of sin -du 2 7  = 

Integrating leads to 

y = GfXl27r 

Applying Hooke’s law, 

where the strain 
G E €  

E = X I 2 a b  

and 

Uf = Y = E X 1 2 ~ b  

Combining eqs. (4) and (7) to eliminate X 1 2 ~  gives 

Y = d W  

(3) 

(4) 

(7) 

Y is assumed to be the level of stress where the chains are pulled from their crystal 
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lattice, and depends upon modulus, surface-free energy, and separation dis- 
tance. 

FREE VOLUME THEORY 

The free volume model is the foundation of many well-known theories that 
describe the local motion, transport, and diffusion of molecules in the liquid and 
gaseous states.* To name a few, it is the basis of the Eyring, “viscosity of liquids” 
and “transition-state” theories, WLF equation of Tg ,  and explains Fick’s law 
of diffusion for polymers. 

Free volume is a measure of the looseness of the structure of matter, and it is 
plausible to associate looseness with molecular mobility. For a molecular seg- 
ment in the amorphous phase to undergo translational motion, an adjacent hole 
larger than the size of the segment must be present. This hole is called “free 
volume.” The ease at which the segment can move into the hole is related to 
its diffusion constant D 

D = 0S2/6 (9) 

where the jump frequency 8 is the number of times a segment of a polymer chain 
can move from one position to another and S is the jump distance. The diffusion 
constant can be obtained in a second way: 

D = KT/fo (10) 

where f o  is a molecular friction constant. This is defined as the force needed 
to pull a segment through its surroundings at  a unit speed. K is Boltzmann’s 
constant and T is temperature ( O K ) .  

The probability that a segment will jump into the hole is given by 

D = KTe-V/vf/fo (11) 

The assumption is made that at the stress level Y ,  where the chain in the crystal 
lattice began to separate: 

Y = Nfo (12) 

where N is the number of chains/cm2; therefore, 

f o  = Y2b/NE (13) 

Substituting eq. (13) in eq. (11) gives 

D = (NKTE/bY2) e-vlvf (14) 

The final assumption is that 

TM a D 

Therefore, 

TM = (TaKTEIbY2)  e-v/vf 
In eq. (1) 

Q, = NKTE/bY2 
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TABLE I 
Table of Data: 1.5-mil LDPE Film 

G[cm3(STP).cm/ 
Sample cm2-s.cm Hg] 

1 7.30 x 10-l' 
2 1.04 x 10-lo 
3 1.00 x 10-10 
4 1.35 X 
5 9.09 X lo-" 
6 9.29 X 
7 8.89 X lo-" 
8 8.16 X lo-" 
9 8.38 x 10-11 

10 9.05 X lo-" 
11 8.38 X lo-" 

TO x QE (ergs/cmz) 

7.39 x 108 
1.24 X 108 
1.23 X lo8 
1.39 X lo8 
1.04 X lo8 
1.37 X lo8 
9.22 X los 
9.17 X lo8 
1.31 X lo8 
1.39 X 108 
1.24 X lo8 

PROOF OF THEORY 

In the past researchers have used gas permeability measurements to estimate 
VF This method was used here for 11 polyethylene films varying widely in their 
tear strengths. Their oxygen transmission rates G were measured, and these 
values were used to calculate TIM from eq. (20). The dependence of V f  upon G 
is as follows: 

( ~ / T ) G  a D = D ~ e - ~ l ~ f  (18) 

Go = Do (19) 

where 7, commonly called the "tortuosity factor," accounts for the impedance 
of flow afforded by the irregular intercrystalline passages. The proportionality 
constant in eq. (18) is the solubility constant. 

TABLE I1 
Comparison of Calculated Tear Strength with Experimental Tear Strength of LDPE Films 

Experimental Calculated 
Sample TM (ergs/cm2) TM (ergs/cm2) 

1 6.2 x 107 3.9 x 107 
2 1.2 x 108 9.4 x 107 
3 1.1 x 108 9.0 x 107 

5 6.9 x 107 7.0 x 107 
6 1.04 X lo8 9.4 x 107 
7 5.4 x 107 5.9 x 107 
8 3.5 x 107 5.4 x 107 
9 8.5 x 107 8.1 x 107 

10 7.5 x 107 9.2 x 107 
11 4.0 x 107 3.0 x 107 

4 1.3 X 108 1.4 X 108 
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EXPERIENTAL. -SO. a. 

Fig. 3. Calculated vs. experimental tear strength. 

Substituting eqs. (17), (18), and (19) in eq. (1) gives 

TM = ToQcG/Go7 (20) 

The following terms are constant for this series of samples: To = 1.20 X 105 
ergs/cm2, N = 6 X lo1* chains/cm2, K = 1.38 X ergs/OK, T = 298"K, E = 
3.5 X 1O'O dyn/cm2, b = 5 X lo-* cm, Go = 1.35 X [cm3 (STP)/cm2-s.cm Hg], 
7 = unity. Qc for each sample along with G is given in Table I. 

A comparison of the calculated and experimental TM'S is shown in Table I1 
and Figure 3. Good agreement exists among samples 2-10, giving proof that the 
theory holds. Samples 1 and 11 differ by about a factor of 2. One explanation 
for this departure is that r varies from unity for these two samples. A least 
squares iine fit to the data was made which has a 0.78 correlation coefficient. 
Statistical analysis, using the Student's t test, shows that the calculated tear 
strengths agree with the experimental tear strengths to within 99%. 

b 
E 
G 

K 
N 
T 
To 
"f 
Y 

Go 

7 

APPENDIX: NOMENCLATURE 

distance between chain in crystal lattice6 (cm) 
Young's modulus of crystal lattice6 (dyn/cm2) 
gas transmission rate [cm3 (STP)/cm2.s.cm Hg] 
gas transmission rate constant [cm3 (STP)/cm2-s.cm Hg] 
Boltzmann's constant (ergs/OK) 
number of chains/cm2 
absolute temperature ( O K )  

proportionality constant (ergs/cm2) 
free volume 
yield stress of bulk polymer 
(tortuosity factor) = unity 
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